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The present study addresses the optimisation of the locations of the error
sensors and the control actuators in an active noise and vibration control
system. This system is implemented on a double panel partition in order to
improve its sound insulation characteristics in the low frequency range. For this
purpose, a model of the active control system is ®rst presented and combined
with a model of the considered vibro-acoustic system. This yields an integrated
simulation model of the actively controlled structure, allowing both structural
and acoustical control. Afterwards, the locations of the control actuators and
the error sensors are optimised in order to increase the performance of the
active noise and vibration control system, de®ned as the average reduction of
the radiated sound power over the frequency band of interest. Di�erent
optimisation algorithms have been implemented. Besides the genetic algorithm,
which is naturally well-suited for discretised problems, a number of gradient
methods are also tested. Finally the performances of all methods are compared
in terms of quality of the obtained solution, computation time and algorithm
complexity. This comparison shows that the best gradient method converges
faster and yields a better ®nal solution than the best genetic algorithm or than
the randomly perturbed gradient method.

# 1999 Academic Press

1. INTRODUCTION

In principle, active noise control can be viewed as the superposition of a
secondary sound ®eld, generated by the control system, on a primary, disturbing
sound ®eld such that the residual sound ®eld is as small as possible. So,
basically, the objective of the active control system is to generate a secondary
sound ®eld that matches the primary sound ®eld as closely as possible, both in
time and in space. The quality of the temporal match is determined by the
control algorithm, while the quality of the spatial match is mainly in¯uenced by
the spatial con®guration of the control sources and the error sensors.
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As the cost associated with the commercial implementation of such an active
control system is still very high, the system should be optimised prior to its
actual installation. This optimisation process should focus on both the physical
and the electronic part of the active control system. The optimisation of the
electronic part deals with all control theory and signal processing problems, and
should result in a controller which reaches its control objective (for example the
minimisation of the maximum error signal or the minimisation of the sum of the
squared error signals) as closely as possible (for a good temporal match). The
present paper, however, focuses on the optimisation of the physical part,
assuming a control system which perfectly realises the desired control objective.
More speci®cally, the problem of optimising the number and the locations of
the error sensors and the control actuators is addressed, because previous studies
[1±12] proved that this spatial con®guration of sensors and actuators strongly
affects the effectiveness of an active control system (due to the required spatial
match). This explains the need for a good optimisation routine for choosing the
appropriate sensor and actuator number and positions. Several authors have
already studied this problem during the past 5 years, using, however, different
optimisation approaches.
In the early papers, the conventional gradient-based optimisation routines

were most often used to solve the considered problem. Clark and Fuller [1] and
Wang et al. [2] determined the size and the location of piezoelectric actuators
and sensors on a rectangular plate for active structural acoustic control by
means of a commercially available constrained optimisation routine. They
de®ned the objective function as the sum of squared sound pressure values in a
discrete number of points in the space above the plate and at a single frequency.
The gradients of the objective function and the constraints with respect to the
design variables were approximated with central ®nite differences. Yang et al. [3]
determined simultaneously the locations and the source strengths of the
secondary actuators in an active noise control system in an enclosure, such that
the acoustic potential energy is minimised. This simultaneous optimisation of
locations and control source strengths complicates the problem, as the control
source strengths can be directly calculated by means of the traditional quadratic
controller model [4] for given error sensor and control source positions. Also
they did not consider the problem of positioning the error sensors as they
assumed that there were a ``reasonable number'' of microphones uniformly
distributed throughout the cavity. Their optimisation procedure is based on a
sequential quadratic programming (SQP) algorithm for constrained optimisation
problems. The gradients of the objective function and the constraints are again
approximated with ®nite differences, and the objective function is again de®ned
as the sum of squared sound pressures in a number of points. They found that
for the simple case of a rigidly walled rectangular enclosure, at a single
frequency, the optimal control loudspeaker tends to form a dipole with the
primary sound source. Nayroles et al. [5] proposed an approximation method for
converting a discrete description of the acoustic system under study to a
continuous description. They viewed their diffuse approximation method as a
replacement for ®nite element methods, and used it as an estimation tool for the
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evaluation of a function and its gradient in an optimisation process of the source
positions in an active absorption system. They recognised that the problem of
optimising anti-noise source positions is essentially non-convex, even when only
a single frequency is considered and abstraction is made of the positioning of the
error sensors. They proposed two gradient methods for solving the non-convex
unconstrained optimisation problem, however, without making a comparison
between the performances of both methods. Benzaria and Martin [6, 7] used the
same diffuse approximation method as Nayroles et al. [5] to build a continuous
description of a numerical vibro-acoustic model of a cavity bounded by a
cylindrical shell. In a ®rst study [6] they observed that a simple selection
procedure works quite well when the number of possible locations for the
control sources is very limited. Later [7] they combined this selection procedure,
generating an initial control source arrangement, with the Polak±RibieÁ re
unconstrained optimisation algorithm for ®nding a good actuator con®guration
in a more complex situation (i.e., with much more feasible positions for the
control sources). They concluded that trends exist for the sources to work
together as dipoles or quadripoles in certain areas of attraction, which are acting
independently on an image of the maxima of the single-tone primary ®eld.
Clearly, this kind of observation can be expected to become very dif®cult when
optimising the control source locations for a broadband disturbing ®eld.
So far, all papers have focused on a single-frequency primary ®eld for the

optimisation of the active control system con®guration. A second tendency in
the literature dealing with the optimisation of actuator and sensor positions in
an actively controlled system, is based on the work of Burdisso and Fuller [8, 9].
They proved, for the case of a simply supported beam, that the dynamic
characteristics of the controlled structure are totally different from those of the
original structure, and that the controlled eigenvalues and eigenmodes are
functions of both the control actuators and the error sensor locations. Hence, an
optimisation process reducing some objective function at only one or a few
frequencies, suffers from the severe drawback that the resonances of the
controlled system may lie close to one of those frequencies. This leads to a lack
of robustness in the optimised controlled system against small frequency
variations in the disturbing input. Therefore, the optimisation should always be
performed over a certain frequency band, or it should be veri®ed that the
eigenfrequencies of the controlled system lie away from the dominant frequencies
in the disturbing excitation. The latter requirement is further elaborated in the
eigenvalue assignment procedure for designing ``optimal'' feedforward control
systems by Burdisso and Fuller [10] and by Rodriguez et al. [11]. They ®rst
determined the optimal properties of the control actuators and the error sensors
in the modal domain, based on the desired eigenvalues of the controlled system.
In a second stage, these sensor and actuator properties in the modal domain
have to be translated into physical characteristics and locations. This problem
remains very dif®cult to solve for real-life structures which cannot be modelled
analytically and with more than only a few dominating eigenmodes. Burdisso
and Fuller [12] developed a similar methodology to design active structural
acoustic control systems for minimal sound radiation. However, the problem of
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translating the ``optimal'' sensor and actuator properties in the modal domain to
physical properties remains the same. Although the theory on the eigenproperties
of actively controlled structures provides a lot of valuable insights into the
problem, it does not present a general framework for optimising the sensor and
actuator positions on a complex real-life structure.
The third tendency in the literature on sensor and actuator optimisation in an

active control system, follows a more pragmatic way. Based on the observation
that the radiated sound power or the acoustic potential energy in an enclosure is
a strongly non-linear and non-convex function of the positions of the control
actuators and the error sensors in an active control system (see for example
reference [5]), some people started to look at more global optimisation
techniques, mainly genetic algorithms [13, 14], as an alternative to the classical
optimisation methods, which are likely to converge to a local optimum.
Moreover, genetic algorithms are well-suited for problems where the dynamic
behaviour of the considered structure is known only in a few points, for example
from measurements. Tsahalis et al. [15] applied a genetic algorithm to ®nd the
optimal loudspeaker positions for an active noise control system implemented in
a propeller aircraft with a pure tone primary excitation. Wang [16] replaced the
constrained optimisation routine from a previous study [2] by a genetic
algorithm to determine the optimal microphone and piezoelectric actuator
con®guration on an actively controlled, simply supported beam excited at a
single frequency. However, he made no comparison between the performances of
the constrained optimisation routine and the genetic algorithm. Hansen et al.
[17] presented a nice overview of several types of genetic algorithms with their
respective advantages and drawbacks for application to the problem of
optimising control source locations in an active control system. De Fonseca et
al. [18] optimised the error microphone and control loudspeaker positions along
the border of the cavity in an actively controlled double glazing window by
means of a genetic algorithm. Their experimental results show a fairly good
qualitative agreement between the predicted and the measured transmission
losses. Moreover, the measured performance of an active noise control system in
an optimised con®guration is much better than that in an intuitively chosen
con®guration. Baek and Elliot [19] compared genetic algorithms and simulated
annealing methods for optimising control source locations in a rectangular
enclosure with a pure-tone primary ®eld. They concluded that the performances
of both methods on the problem being considered are comparable, but that the
genetic algorithms are less sensitive to the tuning of some characteristic
parameters than the simulated annealing method. Souza de Cursi and Cortes [20]
used the randomly perturbed gradient method [21, 22] to select the optimal
secondary source positions along a line in a two-dimensional enclosure. In this
method, which resembles simulated annealing in some sense, the step in the
gradient direction is supplemented in each direction with a random component
of decreasing amplitude. This procedure aims at exploring a large area of the
search domain, while still taking into account the local gradient information that
pushes the search process much quicker to the optimum than in the case of the
usual genetic algorithm. Their simulations show that this randomly perturbed
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gradient method ®nds better solutions than the ®xed-step steepest descent
method.
The previous discussion illustrates that several approaches to the problem of

sensor and actuator position optimisation in an active control system have been
explored. To the authors' knowledge, until now no attempt has been made to
unify the attainments of these approaches. As a ®rst step in this direction, this
paper presents a general simulation environment for the analysis of actively
controlled vibro-acoustic systems and for the optimisation of the sensor and
actuator con®guration. No restrictions are imposed on the type of error sensors
or control actuators. As this general simulation environment is based on a ®nite
element description of the considered mechanical systems, its applicability
extends to complex vibro-acoustic systems (including of course purely structural
or purely acoustical systems), which cannot be modelled analytically anymore.
Afterwards, different algorithms for optimising sensor and actuator locations
have been implemented and tested. The ultimate goal of an optimisation
algorithm in this engineering application is to ®nd a very good control
con®guration in a limited time. This means that the speed of convergence to a
good solution is much more important than a theoretical proof on the
convergence properties on an in®nite time horizon. The performances of genetic
algorithms are compared with those of several classical gradient methods and
with those of the randomly perturbed gradient methods. In order to take into
account the effect of the new resonances of the controlled system in the
optimisation process, the disturbing input is a multi-tone signal, and the
objective function is the radiated sound power averaged over the frequency band
of interest.
The test set-up used in this study is a double wall structure representing a

section of an aircraft fuselage and is described in the next section. The
simulation of the dynamic behaviour of the double panel partition and of the
control algorithm is discussed in section 3. The combination of both simulation
models provides the integrated simulation tool for optimising the sensor and
actuator positions. Section 4 clari®es the optimisation problem and de®nes the
objective function. Sections 5 and 6 discuss the application of genetic algorithms
and gradient methods, respectively, to the considered optimisation problem.
Section 7 compares the performances of the different methods in terms of
convergence speed and quality of the obtained sensor and actuator
con®guration. Finally, some conclusions are drawn in the last section.

2. THE EXPERIMENTAL ARRANGEMENT

The basic test set-up consists of a double wall partition, formed by two plane,
parallel aluminium panels, clamped to a 10-mm thick and 100-mm high
rectangular steel framework. The free dimensions of the plates are
14606760 mm. This partition is mounted in the upper opening of a rigidly
walled enclosure, which is built in the ¯oor of a semi-anechoic room. A
loudspeaker placed in the enclosure under the ¯oor provides the acoustical
excitation of the double wall structure. In this way the lower panel represents the
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outer fuselage of an aircraft (the skin panel) and the upper panel represents the
inner fuselage (the trim panel). The free space above the upper panel may be
viewed as the passenger's cabin, while the loudspeaker simulates the propeller
excitation of the fuselage. The investigated frequency range is from 20 to
250 Hz.
The fuselage test section has about 50 coupled modes below 250 Hz, so its

modal density is comparable to that of many real-life structures. This ensures
that the problem of optimising the error sensor and control actuator locations
on this test article is dif®cult enough such that the conclusions drawn in this
paper are valid not only for academic test cases, but for a large class of practical
problems.
Figure 1 shows the experimental arrangement of the double wall partition

being considered. In order to have a representative model of an aircraft fuselage
section, the dimensions and spacing of the so-called frames (i.e., the
circumferential stiffening of the fuselage) and the stringers (i.e., the axial
stiffening of the fuselage) on the skin panel are based on those found in a real
aircraft.

3. SIMULATION OF THE DYNAMIC BEHAVIOR OF THE ACTIVELY
CONTROLLED DOUBLE PANEL PARTITION

3.1. DYNAMIC BEHAVIOUR OF THE DOUBLE PANEL PARTITION

First, a ®nite element model of the double wall structure has been built. The
model comprises the structural subsystem (the skin panel, the stiffeners and the
trim panel), the acoustical subsystem (the cavity between the trim and the skin
panel and the rigidly walled enclosure under the skin panel), and the ¯uid±
structure interaction between both subsystems. This ¯uid±structure interaction
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takes into account the additional loading of the structural subsystem by the
presence of the acoustical medium, and the excitation of the acoustical medium
by the vibrating structural subsystem. Neglecting damping, the vibro-acoustic
system is described by:

��K� ÿ o2�M��fXg � �Ks�
�0�

ÿ�Kc�
�Ka�

� �
ÿ o2 �Ms�

�Mc�
�0�
�Ma�

� �� �
u

p

� �
� Fs

Fa

� �
: �1�

The column vector of unknowns {X} contains the displacements {u} in the
structural nodes and the pressures {p} in the acoustical nodes. [Ks], [Ka] and
[Ms], [Ma] are the structural and acoustical stiffness and mass matrices, while the
¯uid±structure interaction is modelled in the coupling matrices [Kc] and [Mc]. As
a result of the vibro-acoustic reciprocity [23] principle, the following relation
holds between [Kc] and [Mc]:

�Mc� � r�Kc�T; �2�
where r is the density of the acoustic medium.
{Fs} contains the external forces applied to the structural nodes, while the

external acoustical excitation vector {Fa} is related to the volume velocity vector
{Q} (containing the source strengths of sound sources in the acoustical nodes)
by:

fFag � rf _Qg: �3�
As a typical ®nite element model contains several hundreds or even thousands of
nodes, the modal transformation is used to reduce the number of degrees of
freedom of the original system:

u

p

� �
� FFFs

FFFa

� �
fqg � �FFF�fqg; �4�

in which the columns of the mode shape matrix [FFF] contain the right
eigenvectors {FFFi} of the undamped coupled vibro-acoustic system:

��K� ÿ o2
i �M��fFFFig � �0�: �5�

The eigenfrequency corresponding to the right eigenvector {FFFi} is denoted as oi.
The eigenvectors consist of two parts, the ®rst being related to the structural
subsystem (subscript s) and the second to the acoustical subsystem (subscript a).
Since the coef®cient matrices [K] and [M] are not symmetrical, the following

orthogonality conditions are generally not satis®ed for coupled systems:

fFFFigH�K�fFFFjg � 0 and fFFFigH�M�fFFFjg � 0; for i 6� j: �6�
This non-symmetry of the matrices [K] and [M] implies that the right and left
eigenvalue problems give different solutions. However, for the special form of
non-symmetry (due to the vibro-acoustical reciprocity) of equation (1), it can be
proven [24] that the left eigenvectors,f�FFFig, contained in the columns of the
matrix��FFF�, are related to the right eigenvectors:
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The diagonal modal mass and stiffness matrices, [m] and [k], follow from the left
and right multiplication of the original mass and stiffness matrices, [M] and [K],
with the left and right eigenvectors,��FFF�and�FFF�, respectively:

�m� � ��FFF�H�M��FFF� and �k� � ��FFF�H�K��FFF�: �8; 9�
Due to the normalisation of the eigenmodes with respect to the mass matrix, the
modal mass matrix equals the unity matrix, and the modal stiffness matrix
contains the squares of the natural frequencies oi:

�k� � diag�o2
i �: �10�

Introducing proportional damping, the modal model becomes:

�a�fqg � ��k� � jo�c� ÿ o2�m��fqg � ffg; �11�
where the modal damping matrix is assumed to be diagonal:

�c� � diag�2Bioi�; �12�
with Bi the modal damping ratio of the ith coupled mode.
Pre-multiplying the excitation force vector with the left eigenvector matrix

yields the modal excitation vector:

ffg � ��FFFH
s

�FFFH
a �

Fs

Fa

� �
: �13�

For a practical implementation, the numerically calculated mode shapes are
compared with those resulting from an experimental modal analysis, and the
calculated eigenfrequencies are substituted by the eigenfrequencies of the
corresponding experimentally determined mode shapes. Also the modal damping
ratios are taken as the result of the experimental modal analysis. This yields a
qualitatively reliable simulation model to study the in¯uence of the active
control system on the double wall structure.

3.2. SIMPLIFIED CONTROLLER MODEL

The control system consists of a number of control loudspeakers, driven by a
control law. In many cases this control law is derived so as to minimise some
cost function or performance index. In accordance with other research work
dealing with the simulation of the behaviour of active control systems [4, 25±29],
the controller objective function in the present study is chosen to be the sum of
the squared response signals of a few transducers installed on the structure being
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considered. The reason for this choice is that ef®cient and robust algorithms
exist for realising this objective (see for example reference [4]).
Assuming a linear system, the total dynamic response is the superposition of

the response to the disturbing excitation and the response to the secondary
excitation by the control actuators:

fqgtotal � fqgp � fqgc � �a�ÿ1���FFF�HfFgp � ��FFF�rc��HfLcg� �14�
The subscript p refers to the primary disturbing excitation, while the subscript c
refers to the secondary or control excitation. The vector {Lc} (of dimensions cx1)
contains the source strength of each of the c control actuators. The matrix
��FFF�rc�� (of dimensions cxm) describes the modal in¯uence of the control
actuators on the considered system. As only point force actuators are considered
in this study, its columns contain the left eigenvectors evaluated at the position
rci of each control actuator:

��FFF�rc�� �
�FFF1�rc1� �FFF2�rc1� � � � �FFFm�rc1�
� � � � � � � � �

�FFF1�rcc� �FFF2�rcc� � � � �FFFm�rcc�

24 35: �15�

The assumption of point force actuators does not imply any lack of generality of
the present approach as the modal in¯uence matrices of other types of actuators
(for example distributed piezoelectric actuators) can easily be incorporated into
the proposed model.
The controller determines the strengths {Lc} of the control actuators by

minimising a cost function Z, which depends on the signals of the error sensors
{E}. When the control con®guration contains e error sensors, the vector of error
signals {E} (of dimensions ex1) is:

fEg � �FFF�re��fqgtotal: �16�
The matrix [FFF(re)] (of dimensions exm) contains the right eigenvectors evaluated
at the position rei of each error sensor:

�FFF�re�� �
FFF1�re1� FFF2�re1� � � � FFFm�re1�
� � � � � � � � �

FFF1�ree� FFF2�ree� � � � FFFm�ree�

24 35: �17�

This matrix [FFF(re)] also includes some weighting factors to account for
differences in ampli®cation between acoustical (e.g., from microphones) and
vibration error signals (e.g., from accelerometers or PVDF distributed sensors).
The cost function Z is the sum of the squared error signals. Mathematically

the following quadratic minimisation problem has then to be solved:

min Z � fEgHfEg: �18�
Substituting equations (14) and (16) into equation (18) yields:
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min Z ��fFgHp ��FFF� � fLcgH��FFF�rc�����a�ÿ1�H�FFF�re��H�FFF�re���a�ÿ1

6���FFF�HfFgp � ��FFF�rc��HfLcg�: �19�

The cost function Z reaches its minimum when the derivative to the vector
containing the variable secondary source strengths equals zero [4], which
produces the resulting {Lc} that minimises Z (superscript � denotes the pseudo-
inverse):

fLcg � ÿ�h���FFF�re���a�ÿ1��FFF�HfFgp, �20�
with

�h� � �FFF�re���a�ÿ1��FFF�rc��H, �21�
the matrix of transfer functions between the control inputs and the error sensor
responses.
When a vibro-acoustic system is subject to a primary excitation and controlled

by a certain control con®guration (i.e., with a certain amount of error sensors e
and of control actuators c), the resulting response is obtained by combining
equations (14) and (20). This response clearly depends on positions of both the
error sensors and the control actuators.

4. OPTIMISATION OF SENSOR AND ACTUATOR LOCATIONS

A major objective of this research work is the optimisation of the positions of
the error sensors and the control actuators on the skin or the trim panel or in
the trim cavity. Positions in the radiated ®eld are not considered as feasible in
this study. Instead of using a very time consuming experimental trial-and-error
procedure, the optimum control con®guration can be determined from the vibro-
acoustic model by optimising some objective function. Clearly, the sound energy
radiated into the aircraft interior is the most appropriate objective function to
minimise. The objective function P then takes the following form:

P � 1

fN ÿ f0

XfN
f�f0
f _utrim� f �gH�SSS� f ��f _utrim� f �g, �22�

in which f0 and fN indicate the ®rst and last frequency line of the frequency band
of interest (from 20 to 250 Hz). The radiation impedance matrix of the trim
panel [SSS( f )] contains participations of the velocities of the trim panel nodes in
the total radiated power, and is calculated using the elemental radiators
approach presented by Vitiello et al. [30] and by Elliot and Johnson [31]. In
general, this matrix [SSS( f )] is non-diagonal and frequency-dependent, as indicated
by the notation ``( f )''. For sake of brevity, this notation will be omitted further
on, like in the ®rst part of the paper, as it is clear from the theoretical
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background which quantities are frequency-dependent and which are not.
Restating equation (22) in terms of modal co-ordinates gives:

P � 1

fN ÿ f0

XfN
f�f0
fqgH�M�fqg�2pf�2, �23�

where

�M� � �FFFtrim�H�SSS��FFFtrim� �24�
is the matrix of radiation resistances for the mode shapes of the trim panel in the
coupled vibro-acoustic system. This matrix [M] can be calculated beforehand for
all frequency lines of interest, and stored in the internal memory of the computer
during the optimisation process.
The vector {q} containing the modal co-ordinates at a certain frequency

equals:

fqg � �a�ÿ1��I� ÿ ��FFF�rc��H�h���FFF�re���a�ÿ1�ffgp: �25�
Because the matrices ��FFF�rc�� and �FFF�re�� only have a very limited number of
rows, as there are only relatively few actuators and sensors in the control system
(compared to the total number of degrees of freedom in the model), the
expensive multiplication of large matrices can be avoided in a practical
implementation, resulting in acceptable computation times for the optimisation
routine (about 30 s on a modern workstation).
The radiated sound power is a strongly non-convex function of the error

sensor and control actuator locations. This was already recognised by several
authors ([5, 19, 20]), and is illustrated for this study in Figure 2. This ®gure
shows the reduction of the radiated sound power with an active control system
with four error sensors on the trim panel and two control loudspeakers in the
trim cavity. One loudspeaker position is ®xed in (0�28, 0�28), while the position
of the second one varies over the mid-plane of the cavity. The objective function
has a local optimum when both loudspeakers are close to each other, but the
global optimum occurs for the second loudspeaker near position (1�2, 0�4).
It is also worthwhile to notice that the de®nition of the objective function (22)

involves a broadband optimisation, assuming, however, a harmonic primary
excitation at each frequency line of interest. The reason for this de®nition is that
an optimisation process at a single frequency produces optimal sensor and
actuator locations which are different for different excitation frequencies (for
example on-resonance and off-resonance). As the sensor and actuator
con®guration cannot be changed with the excitation frequency, the objective
function de®nition should include the dynamic properties of the actively
controlled system over the entire frequency band of interest. Therefore, the
optimisation with respect to the broadband radiated sound power should result
in a control system with a reasonable broadband performance and a good
robustness against changes in the disturbing excitation frequency.
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5. GENETIC ALGORITHMS

The objective function equation (22) has ®rst been optimised by means of a
genetic algorithm [13, 14]. Genetic algorithms belong to the so-called directed
random search techniques. The form of direction is based on Darwin's ``survival
of the ®ttest'' theories.

5.1. DESCRIPTION OF THE ALGORITHMS

For the present study, a genetic algorithm using a binary coding of the
variables in the optimisation process has been used. The feasible positions for
the control actuators and the error sensors are restricted to 4080 discrete
positions equally distributed over the skin panel, the trim panel and the cavity
between both panels. The positions coincide with those nodes of the FE model
which are at least at 5 cm from the border of the vibro-acoustic structure (in
order to allow also the practical implementation of the optimised con®guration).
Each position is coded in a 12-bit binary representation. One gene consists of
the binary representations for the error sensor positions (``p1'' to ``p4'') and the
control actuator positions (``p5'' and ``p6'') one after each other, augmented with
four bits to activate the sensors (``e1'' to ``e4'') and another two bits to activate
the actuators (``c1'' and ``c2''):

gene � �e1 e2 e3 e4 j c1 c2 j p1 p2 p3 p4 p5 p6�: �26�
When optimising, for example, the positions for a control system with up to

two control loudspeakers and up to four error microphones, one gene contains
six activation bits and six binary coded locations of 12 bits each, resulting in 78
bits in total. Each gene is attributed a weighting based on the value of its ®tness

0.6

–20

0

20

40

0.4

0.2
0.2

0.4
0.6

0.8
1.0

1.2
1.4

y–direction (m) x–direction (m)

O
b

je
ct

iv
e 

fu
n

ct
io

n
 r

ed
u

ct
io

n
 (

%
)

Figure 2. Reduction of the average radiated sound power as a function of the position of one
control loudspeaker in the mid-plane of the trim cavity.
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function F, de®ned as the percentage reduction of the objective function,
diminished with a penalty for each error sensor and each control actuator:

F � P0 ÿPc

P0
*100%ÿ �# sensors� � a%ÿ �# actuators� � b%, �27�

where the subscript o refers to the situation without active control and the
subscript c to the situation with active control. The choice of the penalties a and
b is based on a trade-off between the marginal yield, gained by a further
decrease of the radiated sound power, and the extra cost incurred by adding one
sensor or one actuator respectively to the control system. In the present study,
the penalties a and b have been chosen arbitrarily as 0�25 and 0�5, respectively.
With this de®nition for the objective function, it is possible to optimise not only
the positions of the error sensors and the control actuators, but also their
number (by means of the activation bits) and type. Depending on its position, a
sensor can be either a microphone or an accelerometer, and an actuator can be
either a loudspeaker or a shaker.
The big advantage of a genetic algorithm is the fact that it undertakes a wider

search in the entire design variable space than the conventional descent
algorithms. This is mainly due to the random character of the procreation
process in the genetic operators. From past experiences [18], however, it is clear
that this lack of descent information causes the algorithm to proceed only very
slowly from one good point in the neighbourhood of the (possibly local)
optimum to a better point (closer to the optimum). For this reason, an attempt
has been made to incorporate some gradient-based behaviour in the genetic
algorithm. Each time the genetic algorithm ®nds a new best gene, the ®tness
function is evaluated for all sensor and actuator con®gurations which are
directly adjacent to the current con®guration, the resulting ®tness functions are
ranked, and the best gene in the mating pool is replaced by the best adjacent
con®guration if the ®tness function of this latter is better than that of the
considered best gene. As the possible sensor and actuator locations coincide with
nodes of the ®nite element model, the con®gurations adjacent to a considered
con®guration are found by means of the information in the ®nite element model.
It is nevertheless important to notice that this gradient-based behaviour does

not replace the guided random search in the conventional genetic algorithm, it is
only supplementary to this guided random search. The main characteristics of
the genetic algorithm used in this study can be found in references [18, 32].

5.2. DISCUSSION OF THE ALGORITHM PERFORMANCES

Figure 3 shows the evolution of a completely random search process (dashed
line), of the conventional genetic algorithm (solid line) and of the genetic
algorithm with gradient-based behaviour (dash-dotted line) as a function of the
number of ¯oating point operations (¯ops). The initial mating pool contained 40
randomly generated genes. The crossover, mutation and translation probabilities
have been selected as 0�8, 0�2 and 0�4, respectively, based on extensive previous
trials [18, 32].
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Figure 3 shows that the performance of both genetic algorithms largely
exceeds that of the random search process. It also clearly indicates that the
genetic algorithm with gradient-based behaviour (dash-dotted line) converges
much quicker than the conventional algorithm (solid line). Already after less
than one tenth of the total computation time, the new genetic algorithm reaches
its ®nal solution. This means that, in future applications, the optimisation
process can be stopped much earlier than with the conventional genetic
algorithm. Besides the fact that the convergence is much faster, the ®nal solution
is also somewhat better. The average population ®tnesses of both genetic
algorithms show a similar evolution, indicating that the genetic algorithm with
gradient-based behaviour is not suffering from premature convergence. This
proves that the random search component is only supplemented and not
replaced by the gradient search component.

6. GRADIENT METHODS

This section investigates the use of some gradient algorithms as an alternative
to the genetic algorithms, described in section 5. As already mentioned,
conventional genetic algorithms suffer from the severe drawback that they
require a huge amount of useless objective function evaluations due to the
random character of the search process. The introduction of some gradient-
based behaviour at certain iterations in the genetic algorithm increased
dramatically the convergence speed of the genetic algorithm. A logical next step
is then to explicitly use the gradient information in each iteration of the
algorithm. Therefore, a mathematical expression for the gradient of the objective
function (22) with respect to the sensor and actuator positions is derived in the
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Figure 3. Evolution of the conventional genetic algorithm (solid line), of the genetic algorithm
with gradient-based behaviour (dash-dotted line), and of a random search process (dashed line).
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next section. In section 6.2, the classical non-linear optimisation algorithms,
which are purely deterministic, are discussed. Afterwards, in section 6.3, the
randomly perturbed gradient method [20±22] is applied to the considered
problem.

6.1. ANALYTICAL COMPUTATION OF THE GRADIENT OF THE OBJECTIVE FUNCTION

The objective function de®ned in equation (22) is an implicit function of the
sensor and the actuator positions:

P � P�rc, re�: �28�
Considering a plane structure where the positions of the sensors and the
actuators of the control system can only vary in the x- and the y-directions, the
gradient of equation (28) is a vector of the following form:

�rP�T � @P
@xc1

@P
@yc1

@P
@xc2

@P
@yc2
� � � @P

@xcc

@P
@ycc

@P
@xe1

@P
@ye1

@P
@xe2

@P
@ye2
� � � @P

@xee

@P
@yee

� �T
: �29�

This vector contains 2x(c� e) elements, in which c is the number of control
actuators and e is the number of error sensors. In a more general three-
dimensional case, also the partial derivatives of the objective function with
respect to the z co-ordinate of the positions of the sensors and the actuators
should be taken into account. In the present study on the simpli®ed aircraft
fuselage test section model, the z-dependency is only relevant for the positions of
acoustical sensors and actuators in the trim cavity, and is related to a variation
of the positions in the thickness direction of the trim cavity. It is neglected here
for sake of simplicity. The ®rst element of the gradient (29) is the partial
derivative of the objective function with respect to the x co-ordinate of the
position of the ®rst actuator. This derivative can be calculated using the
de®nition of the objective function (22):

@P
@xc1
� 1

fN ÿ f0

XfN
f�f0

@f _utrimgH
@xc1

�SSS�f _utrimg � f _utrimgH�SSS� @f _utrimg
@xc1

 !
: �30�

The partial derivative of the trim panel velocity f _utrimg with respect to the x
co-ordinate of the position of the ®rst actuator is obtained using equations (4)
and (22):

@f _utrimg
@xc1

�ÿ jo�FFFs�trim�a�ÿ1
@��FFF�rc��H
@xc1

�h���FFF�re���a�ÿ1��FFF�HfFgp

ÿ jo�FFFs�trim�a�ÿ1��FFF�rc��H
@�h��
@xc1

�FFF�re���a�ÿ1��FFF�HfFgp: �31�

The partial derivative of the pseudo-inverse of the matrix [h] depends on the
partial derivative of the matrix [h] itself and on its pseudo-inverse:
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@�h��
@xc1

� ÿ�h�� @�h�
@xc1
�h�� � �h����h���H @�h�

@xc1

� �H

��I� ÿ �h��h���: �32�

The partial derivative of the matrix [h] with respect to the x co-ordinate of the
position of the ®rst actuator is easily obtained using equation (21):

@�h�
@xc1
� �FFF�re���a�ÿ1 @�

�FFF�rc��H
@xc1

: �33�

It is important to notice here that both the [a] and the [h] matrices are
frequency-dependent. As the entire partial derivative (30) of the objective
function to the x co-ordinate of the position of the ®rst actuator consists of a
summation over all frequency lines, its calculation is very time-consuming,
especially when a large number of sensors and actuators are used. In this case
the matrix [h] (dimension exc) becomes large and the computation of the partial
derivative of the pseudo-inverse of the matrix [h] (32) becomes practically
infeasible. However, for a small number of sensors and actuators, the
computationally most demanding step in the gradient evaluation is the
calculation of the sensitivity of the mode shapes for the actuator x co-ordinate
(appearing in equations (31) and (33)) by means of ®nite differences. This
calculation is based on two-dimensional interpolations in the mode shape matrix
[FFF], which is only ``exactly'' known in the nodes of the ®nite element model. As
this mode shape matrix [FFF] is not frequency-dependent, the calculation of all
sensitivities of the mode shapes for all actuator and sensor co-ordinates can be
performed beforehand. This reduces the total calculation time for one gradient
evaluation to about three to four times the calculation time for one function
evaluation for the case of an active control system with two control actuators
and four error sensors. The expression for the partial derivatives, which is
derived in terms of Cartesian co-ordinates in the present case of a rectangular
geometry, can also be written in terms of a different parameterisation in the case
of curved two- or three-dimensional geometries.
The equations needed for the calculation of the other partial derivatives of the

objective function to one of the control actuator or error sensor co-ordinates are
derived in a similar way.

6.2. COMPARISON OF THE DIFFERENT NON-LINEAR OPTIMISATION METHODS

Four gradient-based methods [33±35] have been implemented (the Fletcher±
Reeves method, the Polak±RibieÁ re method, the BFGS (Broyden±Fletcher±
Goldfarb±Shanno) quasi-Newton method and the Han±Powell method).
Basically the Han±Powell method uses a sequential quadratic programming
algorithm, and was originally developed for solving constrained optimisation
problems. Obviously no constraints are present in the considered problem, but
the design variables are nevertheless bounded within positions on the edges of
the test structure. The Fletcher±Reeves, the Polak±RibieÁ re and the BFGS
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method are methods for solving unconstrained optimisation problems. The basic
structure of any unconstrained gradient-based method is as follows:

Start at an initial point x0

Iteration k

1: Calculate fk � P�xk�
gk � grad�P�xk��
Hk � Hessian�P�xk�� �if necessary�

Test optimality

2: Choose a search direction dk 6� 0

3: Perform a line-search : xk�1 � xk � akdk
with ak�1 � arg min P�xk � adk�, and ak > 0

End

The search direction dk is determined as follows for k>0: for the Fletcher±
Reeves method:

dk � ÿgk � kgkk
2

kgkÿ1k2 dkÿ1, �34�

for the Polak±RibieÁ re method:

dk � ÿgk � gTk �gk ÿ gkÿ1�
kgkÿ1k2 dkÿ1, �35�

and for the BFGS method:

dk � Bÿ1k �ÿgk�, �36�
where the approximated Hessian Bk is calculated as:

Bk�1 � Bk ÿ Bkpkp
T
kBk

pTkBkqk
� qkq

T
k

pTk qk
, with pk � xk�1 ÿ xk and qk � gk�1 ÿ gk: �37�

The initial search direction is the same for all algorithms:

d0 � ÿg0: �38�
Two different approaches for imposing bounds on the design variables have

been tested in this study. The ®rst method consists of introducing penalty
functions, which arti®cially penalise the objective function when one of the
design variables approaches one of the bounds. In the second method, the
bounds are immediately taken into account in the line-search procedure. Before
starting the iteration on the line-search variable a, its maximum value amax is
determined such that a step of size amax along the direction dk never produces a
new point xk�1 whose components exceed their upper or lower bounds. A one-
dimensional minimisation algorithm is then used to solve the following problem:
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min
0RaRamax

j�a�, with j�a� � P�xk � adk�: �39�

It ®rst tries to ®nd a value au for a such that:

j�au�rj�0�: �40�
Moreover, when the search direction is a descent direction, the following holds:

j 0�0� � gTk dkR0: �41�
When equations (40) and (41) are satis®ed, a (local) minimum of j�a� is trapped
between 0 and au. Quadratic and cubic interpolation procedures are then used to
successively generate improved estimates of the solution of the one-dimensional
minimisation problem (39).
In order to allow an objective comparison between the different non-linear

optimisation methods, each method has been tested on the same set of 25
samples of randomly generated initial positions for two control actuators on the
skin panel and four error sensors on the trim panel. Due to the relatively high
modal density of the aircraft fuselage test section, the control system achieves a
reduction of the radiated sound power, compared to the situation without active
control, only in 4 out of the 25 initial con®gurations. This illustrates the need for
a good optimisation algorithm to improve the performance of the active control
system.
The set of 25 samples is submitted to each method, once with and once

without the supply of analytical gradients. In the latter case the algorithms
estimate the gradient of the objective function augmented with penalty functions
in each iteration step using a ®nite difference approximation. Two versions of
the Fletcher±Reeves, the Polak±RibieÁ re and the BFGS methods with analytical
gradients have been tested, the ®rst with the penalty functions and the second
with the bounded line-search procedure. In order to limit the total computation
time, each method is terminated after only 50 iterations. This number is
relatively small compared to the number of design variables, which is 12, being
the x- and y-positions for the four error sensors and the two control actuators.
Figure 4 shows the percentage reduction in the objective function for the
optimised control con®gurations of the samples using the BFGS quasi-Newton
method. The bars in the dashed line give the results obtained using the
analytically supplied gradients and the penalty functions, the bars in the dotted
line give the results using the analytically supplied gradients and the bounded
line-search procedure, while the bars in the solid line give the results when the
gradients are approximated with ®nite differences. Figures 5 and 6 show the
same results for the Polak±RibieÁ re and the Fletcher±Reeves methods,
respectively. Figure 7 gives the results for the Han±Powell method. The bars in
the dashed line correspond to the case with analytical gradients and the bars in
the solid line to the case with ®nite differences.
A visual comparison between these ®gures gives already an indication of the

quality of the different methods for the optimisation of the sensor and actuator
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Figure 4. Percentage reduction in the objective function for the optimised control con®gur-
ations of the samples using the BFGS method, with analytical gradients and penalty functions
(dashed line), with analytical gradients and the bounded line-search procedure (dotted line), and
with ®nite differences (solid line).
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Figure 5. Percentage reduction in the objective function for the optimised control con®gur-
ations of the samples using the Polak±RibieÁ re method, with analytical gradients and penalty func-
tions (dashed line), with analytical gradients and the bounded line-search procedure (dotted line),
and with ®nite differences (solid line).
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positions in an active control system. However, a more founded statistical
treatment of the test results is necessary to infer reliable conclusions about the
relative performances of the methods. As the test results are not normally
distributed, the classical methods for hypothesis testing and analysis of variance,
which assume a normal distribution for the test statistic, are not applicable.
Therefore, the Wilcoxon signed ranks test [36, 37], which is a non-parametric
test, is used here. Non-parametric tests do not make any particular assumptions
about the probability distributions of the test statistic. As all methods are tested
on the same set of samples, a statistical test for paired samples is used, because it
provides much more statistical information than a test for two sets of
independently generated samples of the same size.
The Wilcoxon signed ranks test detects shifts in locations of population

relative frequency distributions for data collected as paired samples. To perform
the test, ranks are assigned to the absolute values of the differences. Differences
equal to zero are eliminated and the number n of differences is reduced
accordingly. Let now D1 and D2 represent the population relative frequency
distributions for populations 1 and 2, respectively. The null hypothesis H0 is ``D1

and D2 are identical'', and, for a one-sided test, the alternative hypothesis Ha is
``D1 is shifted to the right of D2''. The test statistic is T ÿ, the rank sum of the
negative differences, and the rejection region is:

T ÿRT0, �42�
where T0 is given in a table with critical values for the Wilcoxon signed ranks
test for different levels of signi®cance [37]. This means that, if equation (42) is

–20

–40

20

0

40

60

80

5 10 15 20 25

Sample number

O
b

je
ct

iv
e 

fu
n

ct
io

n
 r

ed
u

ct
io

n
 (

%
)

Figure 6. Percentage reduction in the objective function for the optimised control con®gurations
of the samples using the Fletcher±Reeves method, with analytical gradients and penalty functions
(dashed line), with analytical gradients and the bounded line-search procedure (dotted line), and
with ®nite differences (solid line).
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satis®ed, the null hypothesis can be rejected with suf®cient statistical signi®cance,
and hence there really is a difference between the means of the two populations.
First the Wilcoxon test is used to determine whether the use of analytically

supplied gradients signi®cantly improves the convergence behaviour of the
gradient-based methods. For this test the results of all gradient methods are
pooled in two sets, the ®rst for the calculations with analytical gradients and
penalty functions and the second for calculations with ®nite difference
approximations. The null hypothesis H0 states that the means of both sets are
equal, while the alternative hypothesis Ha states that the mean of the ®rst set is
larger than that of the second set. Based on the Wilcoxon test, the null
hypothesis H0 is rejected with a signi®cance level of 1%. Although the gradient
computations are also based on interpolations for estimating the modal
amplitudes (��FFF�rc�� and �FFF�re��) and their derivatives (for example @��FFF�rc��=@xc1)
between the nodes of the ®nite element model, this test shows that the
convergence behaviour of the non-linear optimisation algorithms improves when
gradient information is provided from analytical calculations using equations
(29) to (33). This result suggests that, due to the additional information, which is
supplied by the analytical expressions, the explicit gradient evaluation drastically
reduces the interpolation error in comparison with the ®nite difference
approximations of the objective function, which estimate directly @P=@xc1 and
the other partial derivatives in equation (29). This result clearly appears in the
Figures 4 and 7 by comparing the bars in the solid line with the two other types,
but may be less obvious in Figures 5 and 6.
Second, the Wilcoxon signed ranks test also indicates with a signi®cance level

of 1% that, when using the unconstrained optimisation routines (Fletcher±
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Figure 7. Percentage reduction in the objective function for the optimised control con®gur-
ations of the samples using the Han±Powell method, with analytical gradients (dashed line), and
with ®nite differences (solid line).
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Reeves, Polak±RibieÁ re or BFGS), the bounded line-search procedure, which has
been developed in this study, yields much better results than a conventional
unbounded line-search procedure combined with penalty functions. As these
penalty functions have very large gradients close to the bounds on the variables,
they can completely dominate the gradient of the total objective function (with
the penalty functions included), and hence push the search process in the wrong
direction. For this reason, the incorporation of the new bounded line-search
procedure in the BFGS, the Polak±RibieÁ re and the Fletcher±Reeves methods,
allowing the solution of bounded unconstrained optimisation problems,
dramatically improves the performances of these methods. This conclusion is
clearly illustrated in Figures 4 to 6 by a comparison of the bars in the dashed
line (i.e., with penalty functions) with the bars in the dotted line (i.e., with the
bounded line-search procedure).
Finally, the performances of the different optimisation methods are also

compared using the Wilcoxon signed ranks test with a signi®cance level of 5%.
The populations consist of the results of the experiments both with analytically
supplied gradients and with ®nite differences, as this increases the power of the
statistical test. The Wilcoxon test indicates that the BFGS and the Polak±RibieÁ re
methods are superior to the Fletcher±Reeves method. It also shows that the
Han±Powell method, which uses a complex sequential quadratic programming
algorithm, does not outperform the best unconstrained gradient-based
optimisation methods (BFGS and Polak±RibieÁ re). Especially when they use the
bounded line-search procedure and analytically calculated gradients (the dotted
bars in Figures 4 and 5), they perform at least as well as the Han±Powell
method. Moreover, because of their simplicity the unconstrained algorithms can
be adapted much more easily to possible peculiarities of the problem that has to
be solved, and are therefore preferable for the present application.

6.3. THE RANDOMLY PERTURBED GRADIENT METHOD

The previous section showed that many of the classical non-linear
optimisation methods perform well when started from some randomly generated
set of initial sensor and actuator positions. One major drawback of these
methods is their convergence to a possible local optimum. The introduction of
some random search component may increase the probability of converging to
the global optimum. Therefore, Pogu and Souza de Cursi [21] suggested applying
a random perturbations on the steepest descent method with a ®xed step size.
They theoretically proved that their algorithm generates a bounded minimising
sequence, leading to the global optimum [21, 22]. The structure of their
algorithm is similar to that presented in section 6.2, except for the line-search
step that is replaced by:

3.a Generate n random vectors Zi inside the search domain.
3.b Set Z0�{0}, and xk+1= argmin05i5n P(xk�adk�lkZi).

According to references [20±22], the step size a is ®xed, as opposed to the
algorithm of section 6.2 where it is the result of a one-dimensional minimisation
process along the search direction.
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The sequence {lk}k40 decreases monotonically for increasing iteration number
k:

lk �
���������������������

c

log�k� d�
r

: �43�

When the theoretical restrictions on the constants c and d of references [21, 22]
are respected, it satis®es the following inequality:

8kr0 : 0 < lk < 1ÿ
�����������
1ÿ e
p

, �44�
with e a small positive real number. However, these theoretical restrictions are
dif®cult to validate in practice, and the corresponding theoretical values for lk
are pessimistic, as indicated by Pogu and Souza de Cursi [21]. For that reason,
the values of c and d have been set to unity, similarly as in references [20±22].
The number of random vectors n used in each iteration greatly determines the
number of objective function evaluations in the optimisation process. In order to
limit the computation time per iteration, ®ve random vectors are used in step 3.b
of the algorithm. Moreover, the average number of function evaluations in the
line-search step in the algorithm of section 6.2 appears also to be ®ve.
Figure 8 shows the evolution of the algorithm for different values of the step

size a (dashed line: 0�01, solid line: 0�02, dash-dotted line: 0�05, and dotted line:
0�1). As the objective function does not have a smooth behaviour, large step
sizes yield an oscillating search process dominated by the random search
component. For small step sizes, the algorithm moves very slowly through the
valleys in the objective function, and the random perturbations have no
in¯uence. As a compromise, a step size of 0�02 has been selected for all
subsequent calculations with the randomly perturbed gradient method.
The same set of 25 initial sensor and actuator positions as in section 6.2 has

been used here to investigate the in¯uence of the type of search direction dk. This
analysis shows that the quasi-Newton (BFGS) and the Polak±RibieÁ re methods
do not improve the convergence behaviour of the algorithm in comparison with
the steepest descent method that was proposed by Pogu and Souza de Cursi [21].
The Wilcoxon test also shows, with a signi®cance level of 1%, that the randomly
perturbed gradient method with analytically calculated gradients yields much
better results than that using ®nite difference approximations of the gradient.

7. COMPARISON BETWEEN THE GENETIC ALGORITHMS AND THE
GRADIENT METHODS

Four different types of optimisation algorithms have been tested in this study:
the genetic algorithm, the genetic algorithm with gradient-based behaviour, the
randomly perturbed gradient methods, and the classical deterministic gradient
methods. The discussion on the genetic algorithms in section 5.2 clearly shows
that the performance of the genetic algorithms is drastically improved by
supplementing the directed random search, which is characteristic for the genetic
algorithm, with some gradient search. In this case, the random search
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component aims at exploring the entire search domain, while the gradient search
component speeds up the local convergence to the optimum.
A similar motivation led Pogu and Souza de Cursi [21] to the extension of the

classical deterministic steepest descent method with a random search component.
The main disadvantage of their method is the ®xed step a along the deterministic
search direction. Due to this ®xed step, the algorithm does not achieve a
guaranteed improvement in the objective from one iteration to the next. To
illustrate this, Figure 9 shows the evolution of the randomly perturbed gradient
method with step size 0�01 (dashed line), 0�02 (dash-dotted line) and 0�05 (dotted
line) and of the BFGS quasi-Newton method (in solid line). The BFGS method
achieves in each iteration a minimal decrease in the radiated sound power, but
this is not the case for the randomly perturbed gradient methods. Figure 10
shows the results of the optimisation on the same set of 25 initial positions for
the BFGS and the randomly perturbed gradient method. A formal comparison
of these results using the Wilcoxon signed rank test indicates with a signi®cance
level of more than 1% that the BFGS method is superior to the randomly
perturbed steepest descent method.
As shown in Figure 3, the genetic algorithm with gradient-based behaviour

(dash-dotted line) ®nds a good sensor and actuator con®guration, which reduces
the ®tness function by almost 57%, after almost 50 billion ¯oating point
operations. Referring to the de®nition of the ®tness (27), this corresponds to an
average reduction of the radiated sound power between 20 and 250 Hz of almost
59% (or 3�9 dB) for a system with four error sensors and two control actuators.
When the BFGS method uses this solution as a starting point, it produces after
another 50 billion ¯ops a solution that reduces the average radiated sound power
by 81% (7�2 dB). This strongly contrasts with the dash-dotted curve in Figure 3,
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Figure 8. Evolution of the randomly perturbed gradient method with a step size of 0�01
(dashed line), 0�02 (solid line), 0�05 (dash-dotted line), and 0�1 (dotted line).
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where the genetic algorithm does not yield any improvement in the best solution
after more than 800 billion ¯oating point operations.
The BFGS algorithm with analytically supplied gradients, has been tested with

a starting point, corresponding to the best con®guration out of 50 randomly
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Figure 9. Evolution of the BFGS method (solid line) and of the randomly perturbed gradient
method with different step sizes (0�01: dashed line, 0�02: dash-dotted line, and 0�05: dotted line).
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Figure 10. Percentage reduction in the objective function for the optimised control con®gur-
ations of the samples using the BFGS method (dashed line), and the randomly perturbed steepest
descent method (solid line).
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generated con®gurations. The control system with sensors and actuators in this
starting con®guration reduces the average radiated sound power by 32%
(1�7 dB). After a similar number of ¯oating point operations (50 billion) the
BFGS algorithm produces a sensor and actuator con®guration which reduces the
trim panel vibration energy by 73% (5�7 dB).
These experiments indicate that the best strategy for optimising the sensor and

actuator locations in an active control system is to use a classical non-linear
optimisation method, if possible with analytically calculated gradients, and to
allow multiple runs starting from different initial con®gurations (the so-called
multi-start procedure). These initial con®gurations can be selected with some
engineering judgement or at random. Alternatively, a single, good starting
con®guration can be selected out of the objective function evaluations on some
sets of randomly generated con®gurations.
The experiments also show that the genetic algorithms, which were recently

introduced for optimising the sensor and actuator positions in an active control
system, are not superior to the good gradient methods. In the present case, the
non-linear method even produces a better solution than the genetic algorithm in
a similar amount of computation time. This ®nding agrees with the comment by
Pogu and Souza de Cursi [21] who consider genetic algorithms and other
random search techniques only as ``last resort'' methods for solving continuous
optimisation problems. However, the big advantage of the genetic algorithm is
that it is inherently well suited for solving discrete optimisation problems,
arising, for example, in the sensor and actuator location optimisation on
experimentally determined models in a very coarse grid of the search domain
under study. Moreover, the genetic algorithm, as presented here, allows one to
optimise both the number and the locations of the actuators and the sensors,
and its implementation is quite simple.

8. CONCLUSIONS

The optimisation of the positions of the sensors and the actuators in an active
noise control system has been studied. This active control system is implemented
on a double panel partition, representing a section of an aircraft fuselage, and
aims at increasing the sound transmission loss in the low-frequency range. The
control actuators can be either loudspeakers in the cavity, or shakers on the
panels, and the error sensors can be either microphones in the cavity, or
accelerometers on the panels. The sound transmission loss of the actively
controlled double panel partition strongly depends on the locations of the
sensors and the actuators. This optimisation study uses an integrated simulation
model that is based on an experimentally validated vibro-acoustic FE model of
the double wall structure and on a simpli®ed model of the control system. This
integrated simulation model describes the dynamic behaviour of the actively
controlled double panel partition. The acoustic power, radiated by the trim
panel in the frequency band of interest, is the objective function in the
optimisation process.
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This objective function has ®rst been optimised by means of a genetic
algorithm. Two variants of the usual genetic algorithm have been proposed and
tested on the considered problem. It appears that the incorporation of some
gradient-based behaviour in the genetic algorithm can signi®cantly increase its
convergence speed, without eliminating the advantage of the guided random
search process. The big advantage of the genetic algorithm is that it is inherently
well-suited for solving discrete optimisation problems and that its
implementation is quite simple.
Also a number of classical non-linear optimisation algorithms have been

implemented for solving the considered optimisation problem. These methods
have been tested on a set of starting points, as well with analytically calculated
gradients as with gradients approximated by ®nite differences. The Wilcoxon
signed ranks test indicates that the use of analytically supplied gradients
signi®cantly improves the performance of the algorithms, and that the bounds
on the design variables should be introduced in the line-search procedure, and
not by using penalty functions. The simple Polak±RibieÁ re and BFGS methods
perform at least as well as the complex Han±Powell method in the considered
optimisation problem.
The randomly perturbed gradient method by Souza de Cursi, that tries to

combine the good local convergence characteristics of the gradient methods with
the global optimisation capabilities of the random search techniques, does not
yield very good results for the problem being considered here. Its main
drawbacks are the ®xed step size, and the dif®cult selection of the tuning
parameters.
The main conclusion of this study is that the simple unconstrained gradient

methods, with a bounded line-search and analytically calculated gradients,
perform better than the genetic algorithms and the randomly perturbed gradient
methods. The use of a limited number of different starting points extends these
methods with some random search components in order to improve their global
search capabilities.
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